

TRANSMISSION LINES WITHOUT TEARS

SAIED SEGHATOLESLAMI AD2CC GREG MAURO K3EA

DIFFERENT ANTENNAS...

GOAL

- Learn what makes transmission lines transmission lines
- Gain some insights into how they work
- Build efficient antenna/feedline systems
- ...with just arithmetic...
- ·We can do higher math at a different time

THINGS TO TAKE AWAY

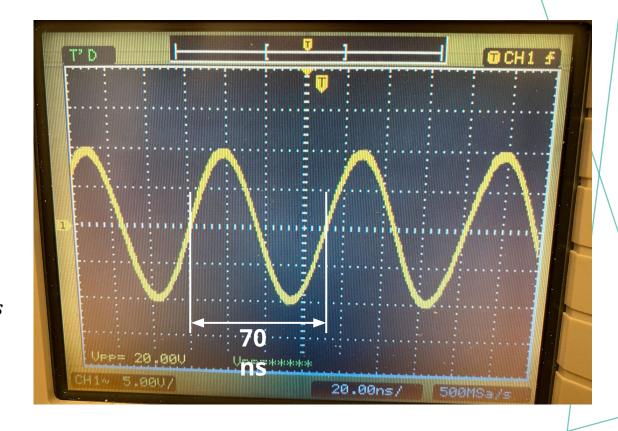
- A 50 Ohm coax (feedline) terminated in other than 50 ohms changes the coax impedance at its input.
- Coax (feedline) construction, material, length, and frequency all impact the above answer (your milage will vary as you change these factors)
- The input impedance to the feedline, in most cases, will have a reactive (capacitive or inductive) component
- Power input to the feedline (into the resistive part of the input impedance) is equal to the power delivered to the load at the termination of the feedline

RECALL THE TECHNICIAN EXAM?

Question	Answer
How fast does a radio wave travel through free space	At the speed of light
What is the approximate velocity of a radio wave as it travels through free space	300,000,000 meters per second (299,792,458)
What is the name for the distance a radio wave travels during one complete cycle	Wavelength
What is the formula for converting frequency to approximate wavelength in meters	Wavelength in meters equals 300 divided by frequency in megahertz

One more thing: in RG8X, radio waves propagate at 79% of the speed in free space or 236,800,000 meters per second

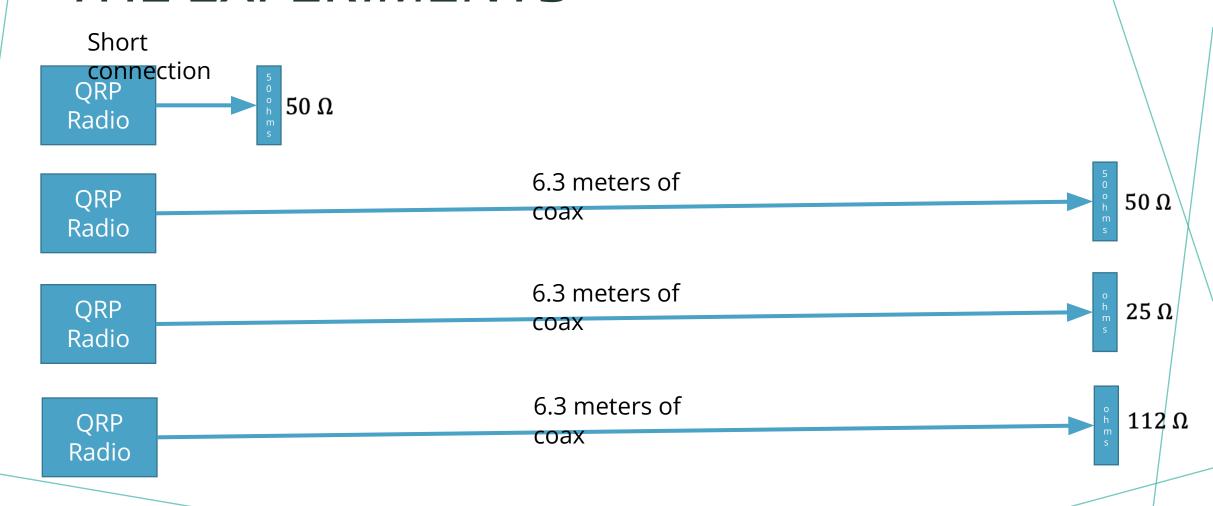
SO, LET'S JUST PICK A FREQUENCY


Frequency = 14.250 MHz

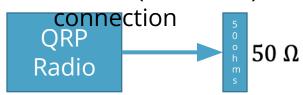
$$Period = \frac{1}{Frequency} \cong 70.18 \ nanoseconds$$

Electrical wavelength in RG8X @

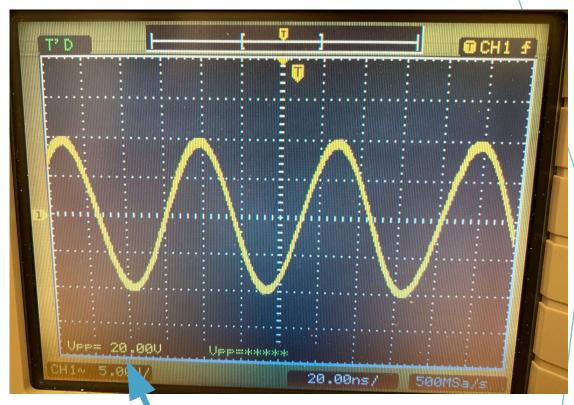
$$14.25 \text{ MHz}$$


$$Wavelength = \frac{Speed \ of \ propagation}{Frequency} = \frac{237}{14.250} = 17.3 \ meters$$

...AND A COAXIAL CABLE


- Coax type: RG8X
- Length: 20' 7" feet = 6.3 meters
- Velocity factor: 79% (velocity in cable as a percent of velocity in vacuum)
- Impedance: 50 Ohms (resistive)
- Loss: "lossless" at HF frequencies
- Ratio of cable length to wavelength: 37%
- Cable length is an "appreciable" fraction of the wavelength

THE EXPERIMENTS


EXPERIMENT 1 - VOLTAGE

"Short" (1.8 meter)

We have already calculated period and wavelength, let's calculate the power delivered to the load.

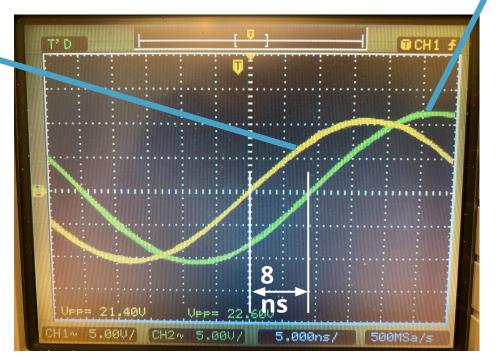
$$P_{load} = \frac{V_{rms}^2}{R_{load}} = \left(\left(\frac{20}{2}\right) \times \left(\frac{1}{\sqrt{2}}\right)\right)^2 \times \frac{1}{50} = 1.0 \text{ Watts}$$

20 Volts Peak to Peak

EXPERIMENT 1 TIME

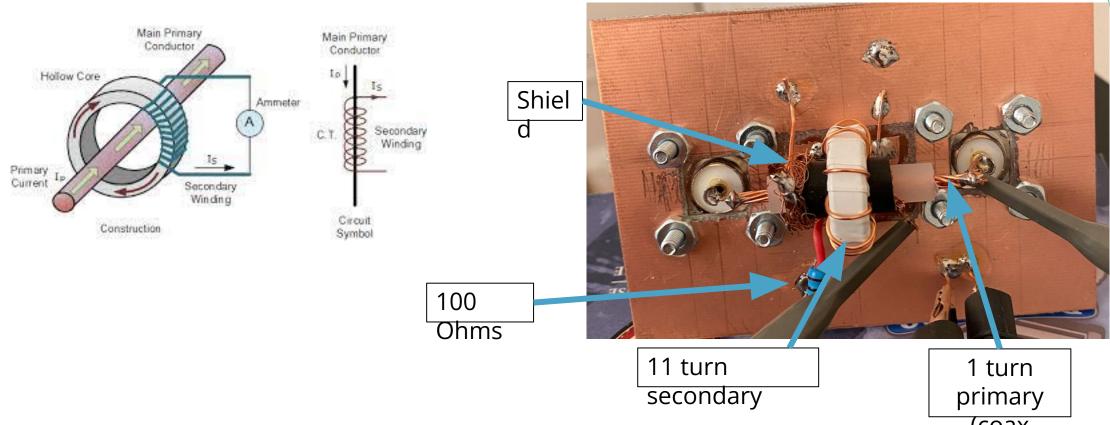
QRP Radio

At the source


 RG8X propagation velocity: 236,800,000 m/s

• 1.8 m / 236,800,000 m/s = 7.6 ns

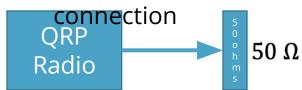
"Short" 1.8 meters of coax


At the load

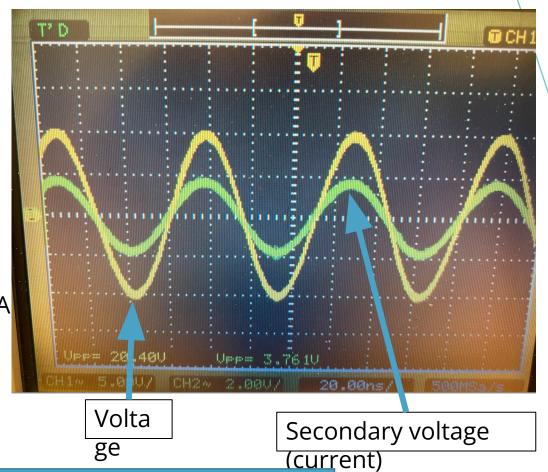
50 Ω

Voltage is delayed about 8 ns at the load from the source

SIDETRACK: MEASURING CURRENT


Instead of measuring current in the secondary, we put 100 ohms across the secondary and measure voltage

(coax


cable)

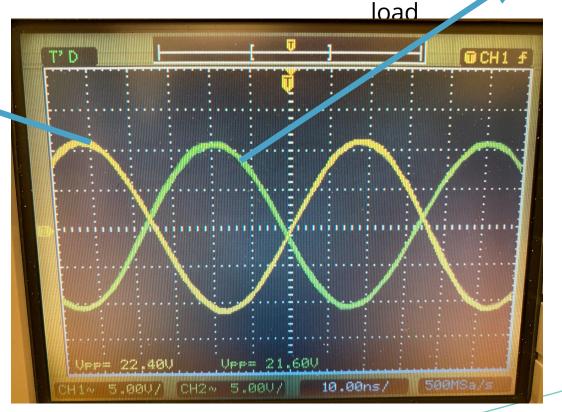
EXPERIMENT 1 - CURRENT

"Short" (1.8 meter)

- Note: current is in phase with voltage indicating resistive load
- 3.76 volts peak to peak / 2 = 1.88 volts peak
- 1.88 volts / 100 ohms = 18.8 mA peak
- 18.8 mA peak (secondary) x 11 turns ratio = 206.8 mA peak (primary)
- 206.8 mA / 1000 = 0.2068 A peak in primary $P_{load} = (I_{rms})^2 R_{load} = (0.2068 \frac{1}{\sqrt{2}})^2 \times 50 = 1.07 \text{ Watts}$

Using the voltage or the current formula for power, we get the same

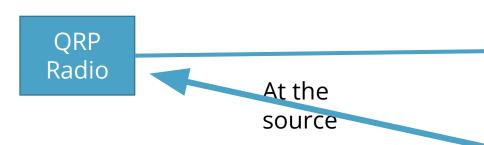
EXPERIMENT 2 - VOLTAGE


QRP Radio

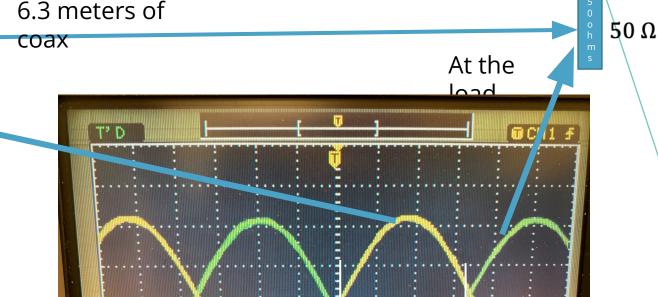
At the source

- ~1 Watt into the cable
- ~1 Watt delivered to the load

6.3 meters of coax


At the

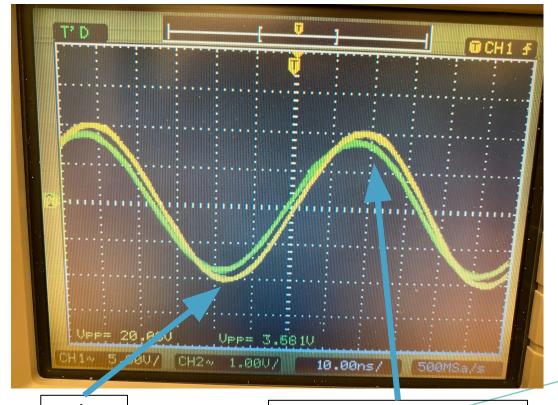
50 Ω


There is a delay between voltage at the load and the source

EXPERIMENT 2 TIME

$$\frac{6.3 meters}{236.8 million m/s} = 26.6 nano seconds$$

- What causes the difference?
- Stray inductance and capacitance?
- Measurement error?
- The RG8X used has a velocity of 191 million miles per second
- ...or a little bit of all the above...


There is a delay 33 ns between voltage at the load and the source

EXPERIMENT 2 CURRENT

QRP Radio 6.3 meters of

coax

- Note: current is in phase with voltage indicating resistive load
- 3.68 volts peak to peak / 2 = 1.84 volts peak
- 1.88 volts / 100 ohms = 18.4 mA peak
- 18.4 mA peak in secondary x 11 = 202.4 mA peak in primary
- 202.4 mA / 1000 = 0.2024 A peak in primary $P_{load} = (I_{rms})^2 R_{load} = (0.2024 \frac{1}{\sqrt{2}}) \times 50 = 1.02 \text{ Watts}$

Volta

Secondary voltage (current)

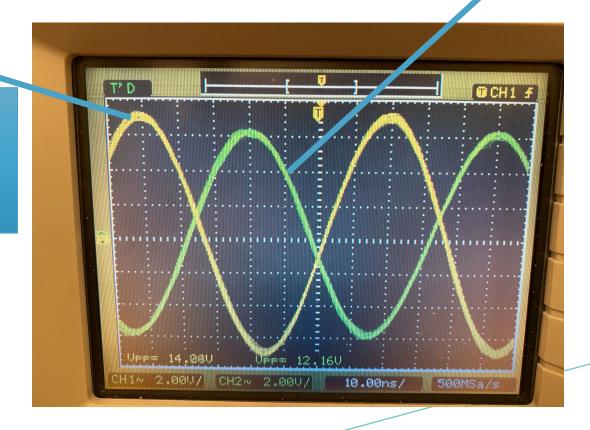
 50Ω

EXPERIMENT 3 VOLTAGE

QRP Radio 6.3 meters of

coax

At the load

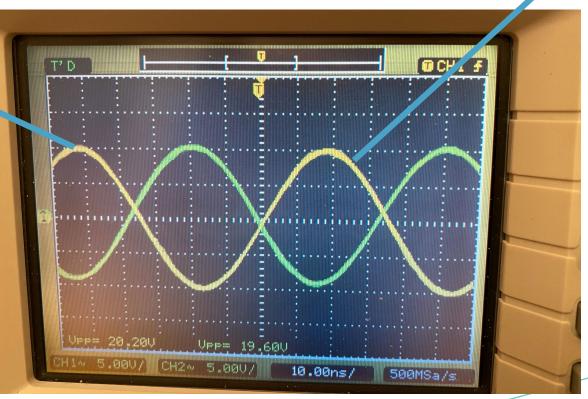

 25Ω

At the SOUTCO

What happened, where does 14.00 volts and 12.16 volts come from?

Power delivered to the load (remember

this number):
$$P_{load} = \frac{V_{rms}^{2}}{R_{load}} = \left(\frac{12.16}{2} \times \frac{1}{\sqrt{2}}\right)^{2} \times \frac{1}{25} = 744 \text{ mW}$$



EXPERIMENT 3 VOLTAGE

source

QRP Coax At the load

Insight
Terminating a transmission
line with other than its
characteristic impedance

50 Ω

EXPERIMENT 3 CURRENT

QRP Radio 6.3 meters of

50 ohms line is terminated in

25 Ω

At the input to the line:

- Current leads voltage by 7 ns (10% of period)
- Load has a capacitive component
- ELI the ICE man
 - Voltage leads current in an inductor
 - Current leads voltage in a capacitor

Volta

gρ

Secondary voltage

(curront)

EXPERIMENT 3 THE MATH

- Voltage at the input 15.2 volts peak to peak
- Voltage across the current sensing resistor 4.72 volts peak to peak
- 4.72 / 100 = 47.2 mA peak to peak
- 47.2 mA x 11 = 519.2 mA peak to peak
- 519.2 mA / 1000 = 0.5192 A
- 15.2 volts / 0.5192 A = 29.3 Ohms (23.7 ohms resistive and 17.2 ohms capacitive)

$$P = \left(\frac{0.5192}{2} \times \frac{1}{\sqrt{2}}\right)^2 \times 23.7 = 0.788 \text{ W} = 798 \text{ mW}$$

EXPERIMENT 4 VOLTAGE

QRP Radio 6.3 meters of

coax

At the load

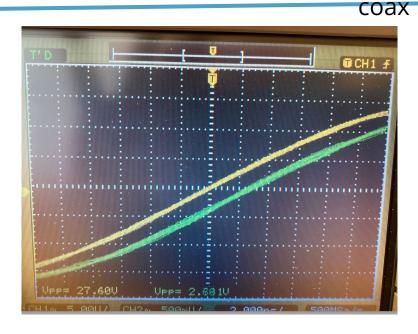
 112Ω

At the

...the same story, the 28 volts and 29.6 volts are related to the 20 volts with a 50 ohm load the same way as the 14.00 volts and 12.16 volts form the 25 ohms case?

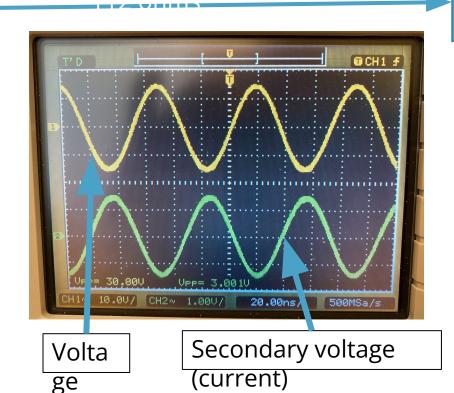
Power delivered to the load (remember this number):

$$P_{load} = \frac{V_{rms}^2}{R_{load}} = \left(\frac{29.6}{2} \times \frac{1}{\sqrt{2}}\right)^2 \times \frac{1}{112} = 978 \text{ mW}$$



EXPERIMENT 4 CURRENT

QRP Radio 6.3 meters of


50 ohms line is terminated in

ns line is terminated in 112 Ω

At the input to the line:

- Voltage leads current by 3 ns (4.3% of period)
- Load has an inductive component
- ElltholCE man

EXPERIMENT 4 THE MATH

- Voltage at the input 27.7 volts peak to peak
- Voltage across the current sensing resistor 2.68 volts peak to peak
- 2.68 / 100 = 26.8 mA peak to peak
- 26.8 mA x 11 = 294.8 mA peak to peak
- 294.8 mA / 1000 = 0.2948 A peak to peak
- 27.7 volts / 0.2948 A = 94.0 Ohms (90.6 ohms resistive and 24,9 ohms inductive)

$$P = (I_{rms})^2 R = \left(\frac{0.2948}{2} \times \frac{1}{\sqrt{2}}\right)^2 \times 90.6 = 0.956 \text{ W} = 984 \text{ mW}$$

INSIGHTS

- This data is for one length of cable, one frequency, and three terminations
- Other situations will give different results, but it gives you an idea what is at work
- Terminating a line in its characteristic impedance makes it appear as if it is not there (except for the wave travel time)
- Terminating a line in a different impedance changes the input impedance of the line (and often with a reactive, capacitance or inductance, component)
- The change depends on the cable, the frequency, the length and the termination

Dayyor daliyarad ta tha input is always agual to the payyor

WHAT DO YOU DO, PRACTICALLY

- Your radio is designed for best performance with 50 Ohms load
- ...but who has a pure 50 ohms resistive antenna?
- Build or buy as good an antenna as you can (consult Greg)
- Your feedline impedance is most likely 50 ohms
- So, you radio will see a different impedance and that depends...
- At an SWR of 2, you will lose 10% of your power output and at an SWR of 3, about 25% of power, so keep your SWR close to 2 or less...

Additional Reference Material

REFLECTION

- When a wave (of any kind) hits a mismatch in its traveling medium, some of the wave will reflect back
- As we have seen, when the line is terminated with a matching impedance, the full power of the wave is delivered to the load and that is the end of the story
- ...But what if it is not? $reflection \ coefficient = \frac{load \ impedance line \ impedance}{forward \ voltage} = \frac{load \ impedance line \ impedance}{load \ impedance + line \ impedance}$

$$reflection\ coefficient(at\ 25\Omega) = \frac{reflected\ voltage}{forward\ voltage} = \frac{25\ -50}{25\ +50} = -.333$$

$$reflection\ coefficient(at\ 112\Omega) = \frac{reflected\ voltage}{forward\ voltage} = \frac{112\ -50}{112\ +50} = .383$$

REFLECTION

$$reflection \ coefficient = \frac{reflected \ voltage}{forward \ voltage} = \frac{load \ impedance \ - \ line \ impedance}{load \ impedance \ + \ line \ impedance}$$

$$reflection \ coefficient = \frac{reflected \ voltage}{forward \ voltage} = \frac{25 - 50}{25 + 50} = -0.333$$

 $reflected\ voltage = -0.333 \times forward\ voltage$

 $load\ voltage = forward\ voltage + reflected\ voltage = 12.16\ volts$

 $forward\ voltage = 18.23\ volts$

 $reflected\ voltage = -6.1\ volts\ (-sign\ indicates\ 180\ degree\ phase\ shift)$

And just for reference:

$$SWR(at\ 25\Omega) = \frac{1 + absolute\ value\ of\ reflection\ coefficient}{1 - absolute\ value\ of\ reflection\ coefficient} = \frac{1 + .333}{1 - .333} = 2$$

$$SWR(at\ 112\Omega) = \frac{1 + .383}{1 - .383} = 2.2$$

absolute value of reflection coefficient =
$$\frac{SWR - 1}{SWR + 1}$$